FDA Expectations and Evaluation of Inhalation Toxicology Studies

Presented by
Timothy McGovern, Ph.D.
SciLucent, LLC
Herndon, Virginia
Development of inhalation products has unique regulatory aspects

My primary goals today are to

- Review the FDA nonclinical expectations for inhalation drug development programs
- Discuss key evaluation aspects of inhalation studies including dose calculation and clinical dosing
- Discuss toxicities of concern by IH route
What Makes the Development of Inhalation Products Unique?

- Generation and characterization of aerosol or dry powder formulations
- Delivery of drug directly to a critical organ
 - increased potential for pulmonary toxicity
- Dose calculation @ FDA considers pulmonary deposition in nonclinical models
There are some basic nonclinical requirements for respiratory drug development

- **Pharmacology**
 - Pharmacodynamics
 - Safety pharmacology

- **Toxicology**
 - General toxicology
 - Genetic toxicology
 - Carcinogenicity
 - Reproductive and developmental toxicology
 - Juvenile development
 - Special toxicology
 - Toxicokinetics

- **ADME**
There are some basic nonclinical expectations for inhalation toxicology studies

- Conduct according to GLP
- Clearly described methodology
- Adequate duration to support proposed clinical trials (ICH Guidance M3(R2))
- Submit at least draft report with line listing of data to support proposed clinical trial
There are some basic nonclinical expectations for inhalation toxicology studies (2)

- Appropriate study design
- Adequate dose selection
- Adequate particle size and dose characterization
There are some basic nonclinical expectations for inhalation toxicology studies (3)

- Species selection
 - as for other routes, usually 2 species, at least one non-rodent

- Route of exposure
 - IH
 - IH + other (if systemic exposure insufficient with IH alone)
There are some basic nonclinical expectations for inhalation toxicology studies (4)

- **Study design:** often 2 types of controls
 - sham/air
 - especially useful if vehicle is novel
 - vehicle

- **Modes of exposure**
 - rodents: nose–only
 - non–rodent: face mask or oropharyngeal tube
ADME and TK Take on Added Importance for Inhalation Products

- For drugs intended to treat pulmonary diseases
 ◦ ideally desire systemic exposure to be minimal (e.g., corticosteroids)

- For drugs designed to treat systemic diseases
 ◦ confirm systemic exposure
 ◦ measure rate of absorption if IH route chosen for rapid onset of action (e.g., diabetes, migraine drugs)
US FDA “considerations” for nonclinical programs for respiratory products are available

 - published by members of the then Division of Pulmonary Drug Products, Center for Drug Evaluation and Review
FDA publication discusses aspects of starting clinical dose selection

- Initial clinical dose is generally a fraction of the NOAEL in animals
 - < 1/10 the NOAEL in rats or 1/6 the NOAEL in dogs on a mg/kg BW basis

- Other adjustments may be appropriate

- Dose comparisons may also be based on body surface area
 - smaller safety factors are appropriate
The FDA publication provides some advice regarding dose extrapolation

- PK information useful for making comparisons between preclinical and clinical exposures
 - requires previous human experience
 - without PK data, preferable to use dose comparisons based on body surface area
 - BW comparisons appropriate when toxicities occur at similar mg/kg doses across species
However, the publication does not address all relevant issues

- The FDA publication does **not** address
 - pulmonary dose calculation in the animal studies
 - extrapolation to clinical doses based on the calculated deposited dose
 - especially important since goal is often to avoid significant systemic exposure
Dosimetry calculations for inhalation studies can be complicated

- Dosing is usually a theoretical estimate

- Dose varies with
 - mode of exposure (nose only vs oral inhalation)
 - particle size
 - anatomic location
 - pulmonary
 - extrathoracic
 - intranasal

- Important QC aspect of study report
Pulmonary deposited dose is calculated by the following formula

Dose (mg/kg/day) = \(\frac{C \times T \times RMV \times DF}{BW}\)

Where:

- \(C\) = drug concentration (mg/L)
- \(T\) = duration of exposure (min/day)
- \(RMV\) = respiratory minute volume (L/min)
- \(DF\) = pulmonary deposition factor
- \(BW\) = body weight (kg)
The individual factors are measured or estimated

- C, T and BW can be measured directly

- RMV is either measured directly or estimated – (most estimate)
 - estimates typically reference equations from a few publications
 - $0.608 \times BW^{0.852}$; Alexander et al, Inhal Tox, 2008
 - $0.499 \times BW^{0.809}$; Bide, RW et al, J Appl Toxicol, 2000
 - estimates based on allometric comparisons may underestimate RMV by up to 40% (Sweeney, 2007)
The individual factors are measured or estimated (2)

- DF is estimated based on particle size characteristics

- Ideal particle profile has MMAD of 1 – 4 μm to allow for pulmonary deposition
 - Note: too large a MMAD can invalidate study

- DF is typically 0.1 for rodents and 0.25 for non-rodents
Pulmonary deposition profile differs across species

Wolff and Doratto, 1993
The pulmonary deposited dose in the rat can be calculated as follows:

- Dose (mg/kg/day) = \(\frac{C \times T \times RMV \times DF}{W} \)

\[
(0.5 \text{ mg/L} \times 60 \text{ min} \times 0.325 \text{ L/min} \times 0.1) \div 0.25 \text{ kg} =
\]

Pulmonary deposited dose of 3.9 mg/kg
Local pulmonary responses are often observed

- Responses in the respiratory system include cellular infiltration and tissue lesions (epithelial degeneration, ulceration/erosion, necrosis)

- Considered non-monitorable in the clinic in a population that is usually already compromised

- Often dose-limiting toxicity
Local pulmonary responses are often observed (2)

- Nasal lesions produced by drug intended for oral inhalation administration in clinic usually not considered in safety evaluation

- Laryngeal squamous metaplasia in rodents considered rodent specific finding
Certain considerations may help to address pulmonary toxicities

- Do longer term studies show progression of lesion?
 - Inflammatory cell infiltration progressing to epithelial lesions
 - Increasing severity with dose/duration
- Reversible?
- Historical control data?
- Are similar findings observed in studies conducted with approved products?
Acceptable clinical doses based on evaluation of local and systemic effects

- Of local and systemic effects, the pulmonary system is usually the most sensitive
 - NOAEL for local and systemic effects may differ

- Dose selection for a proposed clinical trial is typically based on the pulmonary deposited dose at the NOAEL
There are 2 aspects for systemic effects in selecting clinical doses

For identified **systemic** effects:

- **Safe starting** dose calculated as per FDA’s Guidance for Industry (2005) based on BSA comparisons
 - Calculate human equivalent dose (HED) and incorporate safety margin

- **Maximum** dose generally set on a mg/kg or exposure (AUC) comparison basis with inclusion of appropriate safety margins
There is 1 primary consideration for local effects in selecting clinical doses

For identified pulmonary effects:

- Maximum dose set on a mg/kg BW or mg/g lung weight comparison with inclusion of appropriate safety margins
 - typically 10 for rodents, 5–6 for non–rodents
Overall clinical dose selection considers both effects

- The maximum accepted clinical dose is based on the more conservative of the two evaluations in the most appropriate of the species tested

 - Note: deposition in humans is assumed to be 100% of the administered dose
Consider the following case example

14-day rat inhalation study

- Pulmonary deposited doses of 0, 1, 5, and 25 mg/kg

- NOAELs:
 - **Pulmonary**: 1 mg/kg based on inflammatory changes & epithelial degeneration at 5 mg/kg and above
 - **Systemic**: 5 mg/kg based on kidney tubular necrosis at 25 mg/kg
Consider the following case example (2)

- **Pulmonary NOAEL supports maximum clinical dose of ~ 16.5 mg**
 - \[1 \text{ mg/kg } \times 0.25 \text{ kg (rat BW)} / 1.5 \text{ g (rat lung wt)} = 0.165 \text{ mg/g}\]
 - \[0.165 \text{ mg/g } \times 1000 \text{ g (human lung wt)} / 10 \text{ SF} = 16.5 \text{ mg}\]

- **Systemic NOAEL supports maximum clinical dose of up to 25 mg based on BW comparisons**
 - \[5 \text{ mg/kg } / 10 \text{ SF } \times 50 \text{ kg person} = 25 \text{ mg}\]

: supporting dose could be modified with systemic exposure data
Consider the following case example (3)

- Therefore, the rat study supports clinical dosing for 14 days at doses up to 16.5 mg/day

- Similar evaluations typically needed in a non-rodent study

- Most appropriate specie is used for ultimate clinical dose selection
Not all FDA drug review divisions follow the described approach

- Division of Special Pathogen and Transplant Products
 - dose comparisons based on pulmonary dose levels and lung organ weight are based on assumptions and are not the best approach – doses will be approximations
 - a better surrogate for pulmonary exposure is systemic exposure measured by AUC values provided that AUC values are calibrated with AUC values for discreet IV doses
Thank you for your attention!